

Modeling Carbon Fluxes of Forest Ecosystems Using TRIPLEX-FLUX Model

Changhui Peng (彭长辉)

Northwest A&F University, China /

University of Quebec at Montreal (UQAM), Canada

Asian FLUX / ChinaFLUX meeting, August 17-19, Beijing, China

Topics Outline

- I. Overview of TRIPLEX Model Development
- **II.** Case Studies using TRIPLEX-FLUX:
- Modeling carbon fluxes of Chinese Fir Plantation, China
- Simulating carbon fluxes of boreal forests in Canada
- III. Ongoing Challenges: Model-Data Fusion

Three Main Approaches to Investigating Effect of Climate Change on Ecosystems

Long-term observation

 Experimental manipulation

Model simulation

(J.M. Melillo, 1999, Science, 283: 183)

TRIPLEX: A generic hybrid model for predicting forest growth and carbon and nitrogen dynamics (Peng et al. 2002, Ecol. Model)

Developed based on well-established models:

3-PG (Landsberg and Waring, 1997) TREEDYN3.0 (Bossel, 1996) CENTURY4.0 (Parton et al., 1987, 1993)

- Bridges the gap between forest growth and yield and process-based C balance models
- Can be used for:
 - 1) Making forest management decisions (e.g., G&Y prediction)
 - 2) Quantifying forest carbon budgets
 - 3) Assessing the effects of climate change on forest ecosystems

TRIPLEX Model Development History (15 years)

• 2000- 2002: TRIPLEX 1.0 (OFRI, Sault Ste Marie, ON, Canada)

• 2003-2005: TRIPLEX 1.0 Testing and application at stand and landscape Levels (SD, USA; UQAM, Montreal)

2004-2010: Application of TRIPLEX1.0 in China (Beijing U, Zhejiang U and Central-South U of Forestry & Tech.)

•2006-2008: TRIPLEX-Flux, TRIPLEX-DOC (UQAM)

•2008-present: TRIPLEX-Management (UQAM); TRIPLEX-Aquatic (UQAM and China); TRIPLEX-GHG (UQAM and China)

TRIPLEX Model Development Publications (2002-2016) (www.crc.uqam.ca)

TRIPLEX1.0 Model

- Peng et al, (2002), Ecol. Model ; Liu et al. (2002), CEA

•TRIPLEX Application in Canada:

- Zhou et al (2004), EM&S; Zhou et al (2005), CJFR; Zhou et al. (2006), MASGC

TRIPLEX Application in China

- Zhang et al. (2008), EM; Peng et al. (2009), GPC; Zhao et al. EM (2012)

• New TRIPLEX-Flux, TRIPLEX-Fire, TRIPLEX-DOC

- Zhou et al (2008), EM; Sun et al. (2008), EM; Two MS (Wu et al. 2014)

•TRIPLEX-Management, TRIPLEX-Aquatic, TRIPLEX-GHG

- Wang et al (2010, 2012); Wu et al.(2013); Zhu et al. (2014, 2016)

New TRIPLEX-Flux Model Development

(Zhou et al. 2008; Sun et al. 2008)

TRIPLEX1.0 (big leaf, monthly)

TRIPLEX-Flux (two leaves, daily)

Zhou et al, 2008. Simulating carbon exchange in Canadian Boreal Forests I. Model structure, validation, and sensitivity analysis. EM 219:287-299

Variables and functions

Symbol	Unit	Description	Equation and Value	Reference	
А	μmol m ⁻² s ⁻¹	net CO_2 assimilation rate for big leaf	$A = \min(V_c, V_j) - Rd$ $A = g_s(C_s - C_i)/1.6$	Farquhar et al. (1980), Leuning (1990)	
A _{canopy}	µmol m ⁻² s ⁻¹	net CO ₂ assimilation rate for	$A_{canopy} = A_{sun} LAI_{sun} + A_{shade} LAI_{shade}$	Norman, (1982)	
Г	Ра	canopy CO_2 compensation point without dark respiration	$\Gamma = 1.92 * 10^{-4} \text{ O}_2 1.75 (T-25)/10$	Collatz et al. (1991)	
f(N)	-	nitrogen limitation term	$f(N) = N/N_m = 0.8$	Bonan (1995)	
f(T)	-	temperature limitation term	$f(T) = (1 + \exp((-220,000 + 710(T+273)))/(R_{gas}(T+273))))^{-1}$	Bonan (1995)	
g _s	m mol m ⁻² s ⁻¹	stomatal conductance	$g_s = g_o + m100A r_h/Ca$	Ball et al. (1988)	
J	μmol m ⁻² s ⁻¹	electron transport rate	$J = J_{max} PPFD/(PPFD + 2.1 J_{max})$	Farquhar (1982)	
Jmax	μmol m ⁻² s ⁻¹	light-saturated rate of electron transport	$J_{max} = 29.1 + 1.64 V_m$	Wullschleger (1993)	
K	Ра	function of enzyme kinetics	$K = K_{c} (1 + O_{2} / Ko)$	Collatz et al. (1991)	
K _c	Ра	Michaelis–Menten constants for	$K_c = 30 * 2.1 (T - 25)/10$	Collatz et al. (1991)	
K _o	Ра	CO_2 Michaelis–Menten constants for	$K_{o} = 30000 * 1.2 (T - 25)/10$	Collatz et al. (1991)	
R _a	kg C m ⁻² day ⁻¹	autotrophic respiration	$R_a = R_m + R_g$		
R _d	μmol m ⁻² s ⁻¹	leaf dark respiration	$R_{d} = 0.015 V_{m}$	Collatz et al. (1991)	
R _e	kg C m ⁻² day ⁻¹	ecosystem respiration	$R_e = R_a + R_h$		
R _g	kg C m ⁻² day ⁻¹	growth respiration	$R_g = r_g r_a GPP$	Ryan (1991)	
R _h	kg C m ⁻² day ⁻¹	heterotrophic respiration	$R_{h} = 1.5 Q_{10}^{(T-10)/10}$	Lloyd and Taylor 1994	
R _m	kg C m ⁻² day ⁻¹	maintenance respiration	$R_{\rm m} = M r_{\rm m} Q_{10}^{(\text{T-T o})/10}$	Running (1988)	
V _c	μmol m ⁻² s ⁻¹	Rubisco-limited gross photosynthesis rates	$V_{c} = V_{m} (C_{i} - \Gamma) / (C_{i} - K)$	Farquhar et al. (1980)	
V _j	µmol m ⁻² s ⁻¹	Light-limited gross	$V_j = J (C_i - \Gamma) / (4.5C_i + 10.5\Gamma)$	Farquhar and von Caemmerer (1982)	
V _m	μmol m ⁻² s ⁻¹	maximum carboxylation rate	$V_{\rm m} = V_{\rm m25} \ 0.24 \ ({\rm T} - 25) \ {\rm f}({\rm T}) \ {\rm f}({\rm N})$	Bonan (1995)	

Zhou et al, 2008. Simulating carbon exchange in Canadian Boreal Forests I. Model structure, validation, and sensitivity analysis.

Testing site: Chinese Fir Plantation of Huitong, Hunan, China

Half H Observations vs. Simulations (June)

Half H Observations vs. Simulations (July)

Half H Observations vs. Simulations (August)

Daily Observations vs. Simulations (2008-2011)

Model Testing for 2 Flux tower sites in Canada

(Fluxnet-Canada)

Boreal Mixedwood Site (Ontario)

OMW

Diurnal dynamics of measured and simulated NEE during the growing season of 2004

Old Black Spruce (OBS) Flux Tower

Daily Simulation using TRIPLEX-FLUX

(Zhou et al, 2008)

OBS

Diurnal dynamics of measured and simulated NEE during the growing season of 2004

NEE (g C²m30mi)

0.30

* old black spruce (OBS)

Comparison with measured GPP

Comparisons of hourly simulated GPP vs hourly observed GPP for July in 1994, 1995, 1996, and 1997.

Comparison with measured NEP

Comparisons (with 1:1 line) of hourly simulated NEP vs hourly observed NEP for May, July, and September in 1994, 1995, 1996, and 1997.

Summary:

1)、simple model with few inputs, but, able to capture key processes

2)、A acceptable agreement between model simulations and observations- a good job!

Limitations:

1) Some uncertainty with peak values.

2) Model simulations are not sensitive for changes in Vc_{max} , J_{max} , M, R_{10} , RH etc and need to improve.

3. Ongoing Challenges: Model-Data Fusion

esa

ECOSPHERE

SPECIAL FEATURE: DATA ASSIMILATION

Application of the ecosystem model and Markov Chain Monte Carlo for parameter estimation and productivity prediction

Weizhong Li,¹ Changhui Peng,^{1,2},[†] Xiaolu Zhou,² Jianfeng Sun,² Qiuan Zhu,¹ Haibin Wu,^{2,3} and Benoit St-Onge⁴

¹Laboratory for Ecological Forecasting and Global Change, College of Forestry Northwest A&F University, Yangling, Shaanxi 712100 China ²Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal Quebec H3C 3P8 Canada

Citation: Li, W., C. Peng, X. Zhou, J. Sun, Q. Zhu, H. Wu, and B. St-Onge. 2015. Application of the ecosystem model and Markov Chain Monte Carlo for parameter estimation and productivity prediction. Ecosphere 6(12):270. http://dx.doi.org/10.1890/ES15-00034.1

Location:

7 North America Carbon Program flux sites

Flux Tower Sites

4 sites in USA

3 sites in Canada

D	lav	IS (et	al,	20	08,	A	GU	

Site Code	Full Name	State/	Latitude(°N)/	Forests	Age	AMT	AMP
		Province	Longitude(°W)			(°C)	(m m)
CA-Cal	Campbell River - Mature	BC	49.87 /	ENT	60	8.3	1461
	D ouglas-fir	(C anada)	125.33				
CA-Oas	BERMS – Old Aspen	S K.	53.63 /	DB	83	0.4	467.2
		(C anada)	106.20				
CA-Obs	BERMS - Old Black Spruce	S K.	53.99 /	ENB	111	0.4	467.2
		(C anada)	105.12				
US-Hal	Harvard Forest – EMS Tower	MA	42.54 /	DB	S 1	8.3	1120
		(USA)	72.17				
US-H 01	Howland Forest – Main Tower	ME	45.20 /	ENT	109	6.65	778
		(U \$A)	68.74				
US-Me2	Metolius - Intermediate-aged	OR	44.45 /	ENT	90	4.5-8.3	447
	Ponderosa Pine	(USA)	121.56				
US-UMB	University of Michigan	MI	45.56 /	DB	90	6.2	750
	Biological Station (UMBS)	(U \$A)	84.71				

model-data assimilation

MCMC: Markov chain Monte Carlo

Li et al., (2015)

PPFD: photosynthetic photon flux density

4 Selected Key Parameters

- V_{max} : maximum carboxylation rate at 25° C in the photosynthetic carbon cycle in leaf
- J_{max} : light-saturated rate of electron transport in the photosynthetic carbon cycle in leaf
- m : coefficient of stomatal conductance
- R_{10} : the reference respiration rate at 10 °C

Seasonal variation of parameters at different forest ecosystems

Note:

DB = deciduous broad-leaf forest

ENB = evergreen needle-leaf boreal forest

ENT = evergreen needle-leaf temperate forest

NEP simulation

MCMC optimization

(Li et al. 2015)

EC: eddy covariance, BO: before optimization, AO: after optimization ENB = Evergreen needle-leaf boreal forest, ENT = evergreen needle-leaf temperate forest, DB = deciduous broad-leaf forest

Research Needs and Ongoing Challenges:

- An improved network of observations CH₄, both ground-based and remotely sensed, is needed to quantify global CH₄ budget

- Very few wetland CH_4 flux measurements and data sets limit our ability to test and validate large-scale modelled CH_4 emissions. The further extension of the CO_2 FLUXNET measurements and database

EC Flux Tower with Li-Co 7700 (CH₄)

Tropical Rain Forests (2012)

Take – Home Messages:

-To keep the model as simple as possible, as complex as necessary

- Integrating the observations with the state of the art models has great potential to improve model prediction and advance science

Acknowledgments: Funding for this study was provided by QianRen Plan and National Natural Science Foundation of China, the NSERC Discovery Grant (Canada), etc...

Collaborators: Xiaolu Zhou, Wenhua Xiang, Xianwen Deng, Zhonghui Zhao, etc...

Thanks (谢谢)! Open for Questions and Collaboration (www.crc.uqam.ca)

